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Abstract 
Background: Temperature in Ethiopia has increased at about 0.2°C per decade. This coupled with global evidences on 
relationship between weather and disease outcome suggest that climate variability facilitates and exacerbates the 
transmission of several infectious diseases. Despite wide recognition of the impact of climate variability on health, 
there is scanty information on climate variability and its implication on specific disease outcome in Ethiopia. 
Statistical methods are available for studying the relationship between climate variability and disease outcome but use 
of such methods to forecast future disease burden has not been widely considered.  
Objective: The study aims to model climate variability and its impact on burden of malaria.  
Methods: Twenty one year weather data, from National Metrology Agency of Ethiopia (NMAE) and 11 years Malaria 
prevalence data, from Federal Ministry of Health (FMoH) was used in the analysis. Box plot, time series plot, time 
series based models (ARIMA with different parameters and smoothing methods) and poison regression were employed 
to identify pattern of climate variability over a period of 21 years; determine vulnerability of disease to climate change 
and forecast future burden of the disease. Data were organized by region and analyzed using SPSS and findings are 
presented by region.  
Results: The result shows that average maximum and minimum temperatures and total annual rainfall are 
characterized by high inter-annual variability for all regions during the last 21 years. Minimum temperature was 
associated with high malaria prevalence in Tigray (p=0.01), Gambella (p=0.01), Dire Dawa (p=0.025) and Afar 
regions (p=0.03). Conversely maximum temperature was associated with high malaria prevalence in SNNP (p=0.05), 
Oromia (p=0.01), Benishangul-Gumuz (p=0.01), Amhara (p=0.01), and Afar regions (p=0.01). Malaria prevalence, 
projected until 2020, showed increasing trend over years for all regions indicating that climate change exacerbate 
malaria cases if no intervention is in place.  
Conclusion: Effect of climate variability is felt on malaria cases through changing magnitude and seasonality of 
rainfall and temperature. Forecasts of standardized malaria cases showed wide confidence interval and increasing trend 
in the coming five years for all regions and require intervention in the years to come Poison regression is useful to 
study relationship between weather and disease prevalence, while selection of appropriate time series model is 
important to forecast future disease burden. In view of this, it is recommended to choose appropriate model parameters 
to obtain accurate disease burden forecasts. [Ethiop. J. Health Dev.  2015;29(3):183-196] 
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Introduction 
The current health sector development in Ethiopia stems 
from the implementation of a sector wide approach since 
1997/98 through the Health Sector Development 
Program (HSDP), four of which are already in place. The 
health facilities serving the population have grown 
tremendously over the years such that primary health 
care (PHC) unit now serves about 25,000 people. 
However, the country faces internal problem related 
mainly to human resources and finance; and external 
problems related to the effect of climate change. As a 
response to the second problem, Ethiopia among other 
policies, has adopted environmental policies and 
Ethiopia’s Program of Adaptation to Climate Change 
(EPACC) (1).  
 
The Intergovernmental Panel on Climate Change (IPCC) 
forecasts that some parts of Africa will become warmer 
and wetter, whereas others will become drier, and there 
will be higher frequencies of storms and floods (2). 

Although climate change is high on the agenda of public 
health worldwide, and that Ethiopia experiences variable 
weather conditions, and endemic to various climate-
sensitive diseases, there is limited information in 
Ethiopia on association between health outcomes such as 
malaria and weather variables. Little is known about 
trends of climate change impacts on malaria prevalence. 
Such information might be very important for the country 
as Ethiopia is developing its five-year (July 2015-June 
2020) Health Sector Transformation Plan (HSTP), and 
will soon start implementing it. However, climate change 
is identified as one of the major threats in achieving 
HSTP. Therefore, this calls for generating information in 
key health components affected by climate variability 
and change.  
 
Global climate change has emerged as a challenge to the 
global and national socio-economic developments. 
Hence, Ethiopia is among many nations vulnerable to 
health impacts of climate change (3, 4). Over the last 
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decades, temperature in Ethiopia has increased at about 
0.2°C per decade (5). The increase in minimum 
temperatures is more pronounced with about 0.4°C per 
decade with an alarming increasing trend since the 
1990’s. The mean annual temperature in the country will 
increase in the range of 1.7-2.1°C by 2050 and in the 
range of 2.7-3.4°C by 2080 (6). Forecasts indicate that 
the amount of annual rainfall and number of rainy days 
will decrease in some parts of the country by the 2080 
(7). 
 
Climate change is currently adversely impacting the 
health and lives of people around the world, particularly 
in low-income countries (8-10). There are several 
mechanisms in which climate change impacts on health 
(11)). However, two main climatic impacts on health are 
evident from literatures: direct effect due to heat stress 
and weather related extreme events, and an indirect effect 
is climate-mediated change in the incidence of infectious 
diseases and deaths. 
 
Extreme climate events include heavy precipitation that 
results in flooding, low precipitation combined with 
changes in temperature resulting in drought, heat waves 
due to unusual increase in daily temperature, and 
flooding due to excessive rainfall. Flooding is strongly 
associated with malaria and other vector-borne diseases 
transmission and could destroy the existing health 
infrastructure (12-13 ). Describing data or fitting standard 
models may not enable one to track how extreme events 
occur and how they are related to health. 
 
The common direct effect of climate change on human 
health in Ethiopia is not well documented (14). However, 
anecdotal evidence reveal high burden of morbidity and 
mortality linked to climate change and consequent water-
, food- and vector-borne diseases are common (13). 
Appropriate models should however be used to verify 
whether these evidences are acceptable. Evidences of 
widespread vector-borne infectious diseases like malaria, 
schistosomiasis and leishmaniasis are available. The 
recent (2013) phenomenon of yellow fever and dengue 
fever outbreak are good examples of climate change 
induced public health challenges in the country (25). 
Malaria is expected to have substantial link with climate 
change. An increase in temperature and rainfall 
variability is believed to host the breeding of mosquitoes 
and early maturation of the parasite, hence increasing 
probability to sustain the transmission of malaria. In 
general, statistical methods appropriate for different 
scenarios have not been properly selected and applied. 
The methods are often limited to descriptive aspect and 
common tests. Particularly forecasting future impacts 
depends on the appropriateness of the model and correct 
data size. The objective of this study is therefore to assess 
relationship between malaria cases and climate 
variability and determine level of vulnerability of 
population to be exposed to malaria during the next five 
years development plan. 
 

Methods 
Source of Data:  Health and climate data were obtained 
from Federal Ministry of Health (FMoH) and the 
National Meteorological Agency of Ethiopia (NMAE). 
Formal request was written to these institutions to obtain 
relevant data. Accordingly, NMAE has provided monthly 
mean weather data (maximum and minimum 
temperature, relative humidity and rainfall) for 21 years 
(1994-2014) while FMoH provided malaria related data 
for 11 years (2004–2014). Data cleaning was carried out 
to ensure the quality. 
 
Methods of data analysis:  Descriptive methods such as 
frequency, tables, boxplot and time series plots were used 
to examine consistency of the data and observe trends to 
help identify appropriate models for the actual analysis. 
Autocorrelation Function (ACF) was fitted to weather 
data 1994-2014 (252 months) to assess effect of Climate 
Variability on occurrence of weather variables. 
Autocorrelation is a tool that helps to identify if there is 
possible relationship between two time points in a time 
series data that are n months apart. Time Series Model 
fitting was done in SPSS version 20. Family of time 
series models were used to forecast the status of malaria 
for the coming five years, 2015-2020, based on observed 
data. The Generalized Linear Model (GLM) was fitted to 
malaria prevalence, taken as response, and weather 
variables, as predictors using poison link function. This 
model is also referred to as poison regression to shorten 
the name. Rainfall, relative humidity, minimum and 
maximum temperature were used as predictors for each 
region to forecast disease outcome in the near future. 
Several poison regression models with different groups 
of predicators were fitted; for example, model with single 
predictor, two predictors, etc. in different combinations. 
Model fit test was checked to select a more stable model 
that explains relationship between weather variable and 
disease prevalence. Any model with uncertainties due to 
incomplete iteration was dropped. These models were 
compared using Akaike’s information criteria and that 
model with the smallest criteria was considered. 
 
Malaria cases were standardized against the 
corresponding population of each region. Various times 
series models such as ARIMA with such parameters as 
different AR, Differencing and MA values and a number 
of smoothing methods were fitted and the best fitting 
models selected based on results of model diagnostics. 
Predictions may not be reliable unless the existing series 
(2004-2014) is sufficiently smoothed. For this reason the 
observed time series was smoothed using best chosen 
model so that forecasts can easily be made in to the 
future. 
 
Ethical considerations:  Formal request was written to 
FMoH and NMAE by School of Public Health (SPH) of 
Addis Ababa University explaining about the objective of 
the study so as to access both weather and malaria related 
data. Both institutions provided the required data after 
receiving confirmation from SPH that the data will not be 
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used for any other purpose other than answering 
questions stated in the objectives. 
 
Results 
Climate outcome:  In order to observe average variability 
in rainfall for one cycle (year), monthly average rainfall 
(averaged over 21 years) was computed and this was 
plotted in a graph. It was found that seasonality of 
rainfall varies from region to region (Figure 1). The 

amount of rainfall reaches its pick for different regions at 
slightly different months. Somali region seem to receive 
lowest rainfall amount compared to other regions 
included in the figure at all seasons. During Ethiopian 
main rainfall season, between June and September, all 
regions (including those not included in this figure), 
except Somali region, received above 100 mm of rain. 
There are considerable differences in the amount of 
rainfall between the regions even during the main rainy 
season. Amhara region received less rainfall during off 
season and exceptionally lots of rain during main season, 
while Oromia received higher rainfall amount than other 
regions during offseason.   

 
 

 
Figure 1: Monthly average rainfall distribution for selected regions (1994-2014) 
 
 
Along with such varying rainfall, increasing temperature 
trend over years (presented further below) shows that 
Ethiopia has become warmer over the past century and 
the looming Climate Variability is believed to contribute 
to further warming over the next century at 
unprecedented rates. 
 
Boxplot clearly depicts existence of within and between 
regions variability for the three weather variables: 
rainfall, minimum and maximum temperature, although 
extent of the variability differs from region to region.  
The plot shows that Gambella have high variability in 
rainfall with large inter-quartile range, whereas Afar has 
very consistently the same amount of rain from year to 

year, although amount is smaller as compared to other 
regions. Benishangul-Gumz has the highest monthly 
average rainfall over a period of one decade. The finding 
shows that rainfall was not normally distributed over the 
21 years period for all regions but the non-normality is 
sever for Addis, Amhara, Benishangul-Gumz, Dire, 
Tigray and Gambella which is an indication of gradual 
shift in pick periods of rainfall hinting impact of Climate 
Variability on these regions. Addis, Afar, Amhara and 
Tigray regions experience heavy rainfall conditions 
which were much more than their corresponding median 
rainfall amount in some years. Inspection of the three 
plots (Fig 2-4) show that Gambella tends to have high 
variability in all the three weather variables.  
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Figure 2: Box Plot for mean monthly rainfall (1994 – 2014) by region 

 

 
 
Figure 3: Box Plot for mean monthly Max temp (1994 – 2014) by region 
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Figure 4: Box plot for Monthly Mean Minimum Temperature (1994 – 2014) by Region 
 
Long term trend for monthly weather Data:  Weather 
data obtained from NMA span 21 years (252 months), 
hence time series plots for rainfall, minimum temperature 
and maximum temperature was produced.  A plot, which 
compare Amhara and Oromia regions for thier minimum 
temperature, is given in Figure 5; only the two are shown 
to make the graph simple and readable. 
 
From thses plots the following is evident:i) periodic 
occurence of the weather variables, ii) over all trend (for 
252 months) of the weather variables, and iii) 
comparison among various regions in terms of trend of 
weather variables. From this result, it is evident that 
Amhara tend to have higher minimum temeprature 
throughout than Oromia, but both regions depicted an 
increasing trend in temerature. The other plot (can be 
obtained on request) compares the four emerging regions 
interms of monthly average maximum temperature 
trends. Except for Gambela region, which showed 
different pattern, the plots for the other three emerging 

regions (Assosa, Benishangul, and Afar)  show similar 
periodic occurence of high/low temperature for which the 
periodic effect seems to coincide. It is therefore expected 
that  these regions would be subjected to similar impacts 
of climare change. 
 
Gambela depicted slightly different pattern which is hard 
to cohmprehend due to highly undulating nature with no 
obvious cycle or seasnal effect. Particularly, Gambela 
recorded minimum temerature which is lower than that of 
Benishangul until about 2006, then took over since then. 
The rate at which the minimum temerature is increasing 
for Gambela region require special attention. Afar, on the 
other hand, is mostly on the top of the three regions in 
producing high minimum temperature throughout the 
decades. The graph shows observed periodic occurence 
which should be verified through proper statistical 
analysis. Different plots are presented in annex that 
comapre regions in terms of pick points, seasonality and 
overall trend. 
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Figur 5: Time series plots of Minimum Temperature for Amhara and Oromia 
 
 
Measuring relationship among records of consecutive 
months for each of the three weather variables: In this 
section Auto Correlation Function (ACF) is fitted to 
rainfall (Table 2), to Maximum Temp (Table 3), and to 
Minimum Temp (Table 4) for each region to determine 
relationship among consecutive records of each variable 
so that periodic occurrence of key phenomenon such as 
rainfall onset or hottest period in a year can be identified. 
There were 252 months in the data which provide a range 
of lag distances (lag distance, a technical term for time 
series analysis, is defined as number of months between 
two time periods. For example, the lag distance between 
September and November of 2000 is 2). For each region 
ACF tables and graphs (Annex 4) were produced, but the 

results are summarized in tables 1-3 for lag distances 
showing highly significant ACF values (out of the total 
16 lag distances initially fitted). The tables provide 
estimated correlation coefficients between months that 
are x lag distance away from each other (known as 
autocorrelation coefficient) and the graph is meant to 
depict possible periodic occurrence over the period of 
two decades. In Table 1, for example, autocorrelation 
coefficient for rainfall between consecutive months (lag 
1) for Benishangul is 0.78, highest compared to other 
regions and shows the fact that rainfall persists for 
several consecutive months; whereas in Afar this value is 
just 0.28 showing rainfall is observed only for few 
months in sequence. 

 
Table 1: Summary of Autocorrelation values for Rainfall, for selected lags by region 

 Lag Distances 
Region 1 2 11 12 13 

AA 0.62 0.22 0.59 0.76 0.60 

Afar 0.28 0.11 0.59 0.76 0.60 

Amhara 0.69 0.20 0.2 0.64 0.90 

Benshangul 0.78 0.41 0.74 0.88 0.72 

Dire Dawa 0.25 0.06 0.21 0.40 0.23 

Gambela 0.66 0.43 0.46 0.55 0.56 

Harari 0.41 0.15 0.29 0.40 0.30 

Oromia 0.74 0.38 0.71 0.86 0.70 

Somalia 0.33 0.11 0.21 0.54 0.21 

Southern 0.41 0.02 0.29 0.56 0.27 

Tigray 0.58 0.08 0.53 0.81 0.52 
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Table 2: Summary of Autocorrelation values for Min Temp, for selected lags by region 

 Lag Distances 
Region 1 2 11 12 13 

AA 0.70 0.35 0.61 0.73 0.57 

Afar 0.62 0.31 0.20 0.25 0.18 

Amhara 0.79 0.46 0.68 0.78 0.64 

Benshangul 0.73 0.36 0.62 0.77 0.63 

Dire 0.78 0.38 0.69 0.83 0.68 

Gambela 0.79 0.73 0.47 0.47 0.63 

Harari 0.32 0.14 0.22 0.24 0.15 

Oromia 0.74 0.38 0.65 0.74 0.58 

Somalia 0.70 0.49 0.30 0.32 0.32 

Southern 0.60 0.28 0.43 0.51 0.38 

Tigray 0.80 0.47 0.74 0.84 0.71 

 
Table 3: Summary of Autocorrelation values for Max Temp, for selected lags by region 

 Lag Distances 
Region 1 2 11 12 13 

AA 0.65 0.28 0.58 0.75 0.60 

Afar 0.73 0.37 0.64 0.76 0.63 

Amhara 0.70 0.30 0.57 0.74 0.56 

Benshangul 0.80 0.42 0.72 0.86 0.71 

Dire 0.65 0.27 0.62 0.79 0.60 

Gambela 0.77 0.65 0.35 0.37 0.29 

Harari 0.33 0.10 0.17 0.22 0.11 

Oromia 0.72 0.37 0.61 0.78 0.62 

Somalia 0.75 0.58 0.33 0.39 0.34 

Southern 0.76 0.39 0.64 0.77 0.63 

Tigray 0.66 0.27 0.56 0.78 0.57 

 
When the regions are compared for their ACF values of 
the weather variables, the result shows that very similar 
trend is observed for all regions regarding rainfall 
pattern. Firstly, the entire 16 lag ACFs show highly 
significant autocorrelations in all regions (but lag 
distances with highly significant ACF values were 
presented in summary tables as indicated earlier). 
Secondly, the magnitude of lag1 and lag 2 ACFs are 
often very similar and highest. This shows that the 
amount of rain for consecutive months (lag 1) and for 
periods two months apart (lag 2) is highly related. For the 
main rainy season, for example, rain starts in June and 
stays until August or latter in most part of the country. 
Thus amount of rainfall between June and July is very 
similar for most regions giving highest autocorrelation 
value (lag 1). Similarly, rainfall amount in June is also 
somehow similar to rainfall in August (lag 2) producing 
second highest autocorrelation values once again. For 
this reason the magnitude of AC values for lag 1 and lag 
2 are both high and similar. But, the amount of rainfall in 
June and November (lag 5), for example, are very 

different in their magnitude, therefore they have small 
autocorrelation value showing that the periods, 5 months 
apart, are not related in terms of amount of rainfall. The 
high autocorrelation values, ranging from 0.4 for Harrari 
to 0.88 for Benishangul regions, shows presence of 
strong seasonal effect of rainfall every 12 months 
(lag12). This coincides with the commonly known onset 
of rainy season mostly every June which is an evidence 
for periodicity of rainfall in all regions. 
   
Nevertheless, there is a striking phenomenon in the ACF 
values of rainfall in all regions. The ACF estimates for 
lags 11, 12 and 13 are positive and high for the entire 
regions which are assumed to be related to Climate 
Variability. This, somehow, contradicts the perception 
that rain begins always in the same month (possibly June) 
every year in the country. The result rather shows that 
rainfall may not occur every 12 months as we perceived, 
but may start  every 11 months (that is in a period less 
than a year) or may even start after 13th months. That 
means some years rain may come in June and the 
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following year in May, i.e., in less than a year period; 
alternatively, rain may start in June in a given year 
followed by an onset in July the next year, spaced 13 
months apart. 
 
The 5th, 6th and 7th lags also show relatively high rainfall 
ACF for the entire regions but with negative values. This 
is an indication of the presence of sub-periodic 
occurrence of rain or related phenomenon within one full 
rainfall cycle contrasting rainy and dry months. It is 
evident that, a periods 5 to 7 months apart shows 
negative relationship. This is because periods that are six 
months apart experience rainfall in the first month and 
dry situation after sixth months. Significance of 5th, 6th 
and 7th lag distances are probably related to changes in 
the duration of rainfall. Once again, this phenomenon is a 
warning sign for regional health offices commissioned to 
control malaria that occurrence of rainy and dry seasons 
be clearly identified and closely monitored within the 
framework of Climate Variability to halt spread of 
mosquitoes. 
 
A periodogram and results from spectra analysis using 
Fourier frequencies is presented to help in determining 
the periodic effect or the cycle in the occurrence of 
rainfall as compared to the ACF. The periodogram is a 
useful graphical statistics for uncovering the important 
frequencies in a time series data. We used Oromia 
rainfall data for demonstration as it does not have 
missing values. Frequencies are plotted from 0 to 0.5. 
The cycles are determined by the picks in the graph and 
determined by 1/F (where F is frequency). Consequently, 
the result shows that the first pick occurs at about 0.08 
frequency on the periodogram, hence the periodic cycle 
occurs at about 12 months (1/0.08). This agrees with 
results from ACF. The second pick occurs at about 0.17, 
giving the second cycle of 6 months. This approach 
basically confirms results obtained from ACF. 
Periodogram for other regions were fitted but since the 
results agree with results from ACF it was not presented. 
 
The ACF for minimum and maximum temperature shows 
similar pattern with that of rainfall. Lags 1 and lags 11-13 
are relatively very high and positive, indicating shifting 
periodic occurrence of high/low temperature; the first 
two lags are often relatively high and positive for most 
regions indicating that occurrence of high/low 
temperature stays for two or more months consistently.  
 
The ACF values for lags 1, 2, 11, 12 and 13 are 
summarized into three tables, each for rainfall, min temp 
and max temp, to show the significant ACF for ease of 
interpretation. Annex1 shows the Autocorrelation values, 
corresponding standard errors and significance levels for 
each lag. The graphs very often shows the long (12th lag) 
and the short (6th lag) period occurrence of rainfall. 
 
 Climate Variability and its implication on health  
Malaria Prevalence:  In order to study impact of Climate 
Variability on burden of malaria, it is important to assess 

magnitude and distribution of malaria prevalence over 
both space and time. Therefore, mean and Standard 
Deviation was computed for Malaria incidence data per 
1000 population and the result shows that malaria 
prevalence highly fluctuate from year to as evidenced by 
large SD throughout. These fluctuations take place due to 
periodic occurrence of malaria infection which coincides 
with seasonal occurrence of weather variables (Table 4). 
Therefore, there is an indication that malaria prevalence 
is related to the weather variables. Except Dire and 
Tigray, malaria prevalence reached its minimum in 2009 
due to nationwide intervention but increased rapidly 
afterwards.  
 
Table 4: Mean and SD for 11 years (2004-2014) Malaria 
incidence by region (per 1000 population) 
Region Mean SD1 

Addis Ababa 0.771268 0.317823 

Afar 39.08745 23.84352 

Amhara 23.51261 16.15571 

Benishangul 168.5863 132.0971 

Dire Dawa 3.994276 4.894654 

Gambela 146.1917 111.8262 

Harari 19.38148 19.2638 

Oromia 11.56308 7.502907 

Southern 44.40289 28.66824 

Somalia 4.151803 4.434802 

Tigray 42.81922 26.74605 
1 Standard deviation 
 
Based on this indicative result, the next section is 
devoted to assessing relationship between weather 
variables and malaria to find out if Climate Variability is 
accountable for such oscillation.   
 
Association of Climate Variability and malaria 
incidence in Ethiopia:  Relationship between Climate 
Variability and malaria cases was assessed for seven 
regional states and two city administrations and results 
from best performing models were summarized and 
presented in Table 4. The finding shows that a minimum 
temperature and malaria cases showed statistically 
significant association in Tigray, Gambella, Dire Dawa 
and Afar. The relationship was strongest in Tigray. 
Similarly, maximum temperature showed association 
with malaria case in SNNP, Oromia, Benishangul-
Gumuz, Amhara, Afar and Addis Ababa. From this 
finding the extent of relationship between malaria cases 
and rainfall, min temp and max temp showed high 
variability among regional states indicating differential 
impact of Climate Variability to the regions (Table 4). 
 
The direct output from Poisson regression contains 
estimated parameter, B (regression coefficient), STD of 
the parameter, 95% C.I. for the estimate and its 
corresponding significance probability (p-value). The 
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importance of the weather variable in explaining malaria 
prevalence is judged by the magnitude of B, of course 
given that the parameter is significantly different from 
zero. Weather variables associated with large B 
contribute more in increasing/decreasing (depending on 
the sign) the burden of the disease. The B may not be 
directly interpreted, but changed to a different scale, as 
presented in Table 4. For example, considering Malaria 
cases in Amhara region, B was 0.028 for rainfall and it is 
highly significantly larger than zero (p=0.01). Hence 

exponentiating this (exp [0.028]) gives 1.029. This value 
is known as Rate Ration (RR). It is interpreted as: 
estimated percentage change in Malaria cases is 2.9% for 
a 1 mm increase in the rainfall; which shows that high 
rainfall increases Malaria infection. But association of 
Burden of Malaria and maximum Temperature is reverse, 
as B value is negative. For a one Degree celiac increase 
in maximum temperature, Malaria infection decreases by 
about 1.7%.  

 
Table 5: Regression using GLM for malaria cases, May 2015. 

Regional States Variables RR 95%CI 

Addis Ababa Rainfall 0.991  0.990-0.992 

 Tmax 1.291 1.248-1.336 

 Tmin 0.836 0.809-0.863 

Afar Rainfall 0.862 0.860-0.863 

 Tmax 1.121 1.110-1.132 

 Tmin 1.506 1.501-1.511 

Amhara Rainfall 1.038 1.038-1.038 

 Tmax 1.746 1.741-1.750 

 Tmin. 0.293 0.292-0.294 

Benishangul-G. Rainfall 1.006 1.006-1.006 

 Tmax 1.399 1.392-1.407 

 Tmin 0.731 0.729-0.733 

Dire Dawa Rainfall 0.951 0.949-0.953 

 Tmax 0.266 0.254-0.279 

 Tmin 2.165 2.052-2.285 

Gambella Rainfall 0.996 0.996- 0.996 

 Tmax 0.878 0.876-0.881 

 Tmin 1.239 1.236-1.243 

Oromia Rainfall 0.971 0.970-0.971 

 Tmax 1.851 1.844-1.859 

 Tmin 0. 653 0.651-0.655 

SNNP Rainfall 1.042 1.042-1.042 

 Tmax 2.099 2.093-2.102 

 Tmin 0.722 0.720-0.724 

Tigray Rainfall 1.032 1.032-1.032 

 Tmax 0.858 0.848-0.869 

 Tmin 3.036 2.999-3.074 

Somali with three year missing and not included in the analysis 
 
Forecasting vulnerability to malaria by Region:  
Various time series based models were fitted [that is with 
different parameters, like AR(1), AR(2), ARMA, 
ARIMA, etc.,] and those judged better than others were 
used to estimate past trends in malaria cases and 
projected future malaria burden. Forecasts are presented 
in terms of graphs so that future projected trends can 
easily be recognized visually (numerical forecasts can 

also obtained from the same software output). In figure 6, 
the graph is divided into two compartments, the left 
compartment contain estimated trend using 11 years data 
and compartment on the right hand side contain trend 
representing future forecast. The right hand side contains 
red and blue graphs representing observed and fitted 
trend respectively, with their corresponding CI. The right 
hand side of the graph shows trend for the forecasted 
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malaria cases with corresponding CI.  Looking through 
the observed malaria data in figure 6, two pick points 
may be observed, lowest and highest malaria cases in 
2009 and 2013 respectively in considerable number of 
regions. These years may be attributed to interventions 
(2009) and normalization of cases for some reason 
(2013). In Amhara region, the fitted (blue line) curve 
shows a rapid overall increasing trend in malaria cases 
from year to year (Figure 6). The forecast values 

followed similar pattern. For example, malaria cases are 
projected to be about 833,586 by 2015 (or from 48 
persons to 75 persons per 1000 people based on the C.I.) 
and expected to reach over one million by 2020 (or 
approximately 55 to 120 persons per 1000 people using 
the C.I) if things continue the way they are today. 
Therefore, there is strong evidence that Climate 
Variability exacerbate malaria cases if no action is taken. 

 

 
Figure 6: Current trend of Malaria (persons per 1000 people)in the left panel (with its observed in red, estimated 
in blue and 95% Confidence interval) and predicted values in the right panel (again with estimated value in blue 
and 95% C.I) for Amhara region 
 
In Oromia region, malaria cases showed a small but 
gradual decrease from 2004 up to 2009, and then sharp 
increase during the following year reaching the 
maximum by 2013 and started to decline again. Due to 
short fluctuations in the annual data, the estimated line 
could not be smoothed as that for Amhara region. 
Although there is a general increasing trend through the 
decade, the fitted curve is a bit undulating. Because of 
lack of smoothens in the fitted line contributed to a 
constant forecast of about 359,941 (approximately 17 
cases per 1000 people which may reach 45 cases per 
1000 people by 2020 from C.I.) throughout. The 95% 
Confidence Interval on the other hand is very wide, even 
getting wider and becoming a parabola, which is an 
indication of difficulty of projecting in the future due to 
lack of clear pattern from present and past observations. 
Oromia and SNNP regions showed similar pattern in 
malaria cases. 
 
Discussion 
Ethiopia is a country characterized by undulating land 
escape, ranging from lowest point (Dallol) to over 4000m 
high mountain (Ras dashen). Synthesis of results from 
analysis of weather variables presented earlier shows that 
regions dominated by higher elevations such as Amhara 

region receive more rainfall and tend to be less warm 
than those regions in low arid areas, such as Somali 
region. On the other hand, Oromia and SNNP regions 
seem to have more consistent rainfall amount on average 
over these years and probably less affected by Climate 
Variability. Minimum temperature is not normally 
distributed in all regions, while maximum temperature is 
distributed approximately normally in all regions, which 
indicate the fact that, it is the minimum temperature 
which is important in the study of Climate Variability. 
These findings agree with studies made by (5), who 
documented an alarming increase in minimum 
temperature since 1990; and (11), who pointed out 
mechanisms in which Climate Variability impacts on 
health. Such increasing trend in temperature over years 
shows Climate Variability may bring even more warming 
and less rain in the coming future.  
 
Results obtained from ACF, where rain onset showed tri-
annual situation in a year, provide an idea that rain onset 
and offset may change from time to time and the length 
of stay may as well vary, which could be ascribed to CC. 
For Addis Ababa, for example, the ACF values of lag11, 
lag12 and lag13 are 0.59, 0.76 and 0.61 respectively, 
indicating presence of 3 possible seasonal periods for 
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onset of rainfall; an indication of a possible shift in the 
rainfall patterns in the last two decades. Gambela and 
Benishangul regions show slightly different ACF 
patterns. Here, Lag1 and lag2 ACF values are positive 
and relatively high showing longer rainy periods over the 
past two decades. The periodic occurrence of rain also 
spread over longer period, from 10th lag to 14th lag. This 
shows that rain often stay longer mostly up to 5 months 
with some shift in the onset. Rainfall in Afar seems more 
erratic as the largest positive ACF is at 13th lag. This 
could be due to Climate Variability over the last two 
decades and surely these changes affect occurrence and 
magnitude of disease outcome. It is therefore important 
to understand the changes taking place in the onset of 
rain due to impact of Climate Variability so that 
interventions introduced to control malaria coincide with 
breeding period for anopheles mosquitoes; prevention 
and control strategies may also need to be different for 
these regions in the future. 
 
The ACF for minimum and maximum temperature have 
similar pattern with that of rainfall. Except for Gambela 
and Somali regions, the remaining regions have similar 
pattern of ACF for min and max temp. The ACF for the 
two regions is unique in the sense that all ACF values are 
positive. This shows that high maximum temperature 
prevails throughout the year, a process that was evolving 
over the decades probably inducing Climate Variability. 
More spread of high positive ACF values over 2010 to 
2014 was observed indicating a gradual reduction of the 
lag length (increased frequency) for occurrence of high 
maximum temperature. 
 
Weather variability and Climate Variability are drivers of 
several infectious and non-infectious diseases that are of 
great public health concerns in Ethiopia. Malaria, yellow 
fever, dengue fever, meningitis, and leishmaniosis are the 
most common climate sensitive disease (3-4). Malaria is 
one of the widely studied climate-sensitive diseases in 
Ethiopia. In Ethiopia, 75% of the total landmass (or 
<2000 m) is malarias or potentially malarias (11). 
However, the occurrence of endemic malaria is 
documented during non-epidemic years beyond the 
threshold elevation for transmission (15-16). From 
description of malaria prevalence in the result section of 
this article, it was found that burden of malaria fluctuates 
from season to season which coincides with seasonality 
of the weather variables; which is in line with the 
findings of (15). 
 
Yellow fever and dengue fever are also climate sensitive 
vector-borne diseases (11). For instance, WHO report 
showed the re-emergence of yellow fever in southwestern 
during 2013 and newly emerging of dengue fever in 
eastern part of Ethiopia. Climate Variability have the 
potential to increase the risk of transmission by 
increasing the distribution and abundance of vectors, and 
duration of mosquito and seasons (17). Another 
important issue is that it is likely that some areas will 
have increased in activity and human infection with 

predicted Climate Variability, but risk of increased 
transmission will vary with locality, vector, host and 
human factors (17). 
 
This study found that there is considerable association 
between weather variables and malaria incidence in the 
country, but the relationship varies from region to region. 
Although not specifically about highlands, this finding is 
in line with similar results from other studies which 
concluded that malaria transmission in highland areas is 
critically influenced by night time temperature. The role 
of temperature in determining malaria endemicity and 
intensity is more pronounced at areas boundary to upper 
limits of malaria endemicity (18). Consequently, the 
abrupt rise in night time temperature mainly due to 
warming is expected to push the elevation known to be 
the upper limit boundary, which is 2000 m in Ethiopia. 
Because there is an increase in the minimum temperature 
even in the highlands, this finding is in line with that of 
(18). 
 
Results from poison regression showed that malaria 
prevalence is positively associated with increased rainfall 
and minimum temperature but negatively associated with 
maximum temperature. Particularly, increase in 
maximum temperature led to decrease in malaria 
infections. This agrees with findings of (19) that 
temperature fluctuations around low mean temperatures 
facilitating to speed up rate processes, whereas 
fluctuations around high mean temperatures act to slow 
down the processes. On the basis of basic biology of 
malaria vectors, studies showed absence of vectors in 
geographic zones with very cool ones to survive (20-22).  
 
This result provides a general framework of relationship 
between malaria and weather variables that can be 
generalized to other diseases as well. Such significant 
relationship between the weather and disease burden 
indicate importance of considering weather variables to 
accommodate issues of Climate Variability in future 
planning of interventions. This study agrees with several 
other studies done here and elsewhere as follows: 
Temperature is reported to affect sporogonic 
development of P. falciparumby altering the kinetics of 
ookinete maturation (23). It was found that as 
temperatures decrease from 27 to 21°C ookinete 
development and blood meal digestion takes longer 
duration. However, high temperatures of 30 and 32°C 
appeared to significantly affect parasite densities and 
infection rates by interfering with developmental 
processes occurring between parasite fertilization and 
ookinete formation, especially during zygote and early 
ookinete maturation (24).  
 
On the same note emerging and remerging vector-borne 
diseases were also reported in recent years. For instance, 
WHO report showed the reemergence of Yellow Fever in 
southwestern during 2013 and Dengue Fever in eastern 
part of Ethiopia (25). Climate Variability has the 
potential to increase the risk of transmission by 
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increasing the distribution and abundance of vectors, and 
duration of mosquito and seasons (17).  
 
Data collected for this study witnessed that dengue fever 
was observed in 2013 in Dire Dawa in considerable 
amount; but few number was captured in 2014 in Afar 
and Somalia regions. A similar recent study also 
indicated that dengue was present in Ethiopia (Dire 
Dawa and Harrar), Somalia (Mogadishu), Madagascar 
(Diego Suarez) and in the Comoros Islands (Mayotte) 
and in other parts of Somalia (Kismayu, Berberaand 
Hargeisa) and Mauritius (22). It has been described that 
the disease is well adapted to the urban environment but 
also occurs in rural areas. The vector breeds in containers 
where water is allowed to accumulate. Aedes mosquitoes 
thrive in warmer environments, but not in dry 
environments. Higher ambient temperatures favor rapid 
development of the vector, increase the frequency of 
blood meals, and reduce the extrinsic incubation period 
(EIP). Dengue fever is among climate sensitive diseases 
believed to aggravate with rise of temperature and 
environmental changes.  
 
A study has shown, if the ambient temperature is too 
low, mosquitoes are unlikely to survive long enough to 
become infectious and pass on dengue (26). The 
Comoros, Ethiopia, Kenya, the Seychelles, Somalia, 
Tanzania, Réunion, Mauritius, and Mozambique were 
considered to be endemic from 1975 to1996 (27). 
Dengue occurs sporadically in Kenya and Somalia in 
which four major outbreaks occurred between 1982 and 
1993 in various regions of Somalia. Therefore, the 
findings in malaria which mostly agreed with findings of 
other researchers support earlier findings on dengue. 
 
Projections of malaria cases using time series models 
provided some insight about the past and future malaria 
incidence trends for regions of Ethiopia. Forecasting 
using standardized malaria cases showed steady state but 
with wide C.I which fits to the expected rise of malaria in 
the coming five years. These findings agree with similar 
study done in the continent. According to projections 
done in the past the highland areas of Ethiopia and 
Zimbabwe are among those with expected rise of malaria 
incidence in higher altitudes. A climate forecast related to 
future distribution of malaria in relationship with Climate 
Variability or temperature rise demonstrated both 
Ethiopia and Zimbabwe will be the most affected (28) . 
The Highlands of Zimbabwe become more suitable for 
transmission (29).  
 
In a similar study (22) composite of vector-borne 
diseases demonstrated increase in geographical areas of 
the diseases beyond their endemicity limit. They assessed 
the potential impacts of anthropogenically-induced 
Climate Variability on vector-borne diseases globally and 
suggested an increase in extent of the geographical areas 
susceptible to transmission of malarial Plasmodium 
parasites, dengue Flavivirus and Schistosoma worms. 
Those diseases are highly sensitive to Climate Variability 

on the periphery of the currently endemic areas and at 
higher altitudes within such areas. The study indicated 
that compared to the present endemic areas the increase 
in the epidemic potential of malaria and dengue 
transmission may be estimated at 12-27% and 31-47%, 
respectively, while in contrast, schistosomiasis 
transmission potential may be expected to exhibit a 11-
17% decrease (20,21,30). 
 
Regarding related diseases, it was reported that some 
areas will have increased human infection from dengue 
with predicted Climate Variability, but risk of increased 
transmission will vary with locality, vector, host and 
human factors (17). A literature has shown that dengue 
was relatively uncommon in East Africa before 1952. 
However, outbreaks were documented in several 
countries between 1924 and 1950; Mozambique, 
Madagascar, Ethiopia, Somalia, and the Comoros. 
 
Conclusion: 
Results from analysis of data showed that seasonality of 
rainfall varies from region to region; the amount reaches 
its pick for different regions at different months; hence 
interventions for the regions should be designed 
accordingly. The weather variables show periodic 
occurrence with differential trend for regions. It is 
concluded that rainfall, min temp and max temp did not 
always occur every 12 months for the last two decades as 
expected, but also occur every 11 months or even 13 
months apart possibly due to Climate Variability with 
some level of variability among regions. Relationship 
between weather variables and malaria cases was found 
to depend on regions, implying that the level of Climate 
Variability impact also differ from region to regions 
which should be considered during planning of 
interventions. Forecasts of standardized malaria cases 
showed wide confidence interval and increasing trend for 
all regions with different magnitude. It is therefore 
concluded that this result fits to the expected rise of 
malaria in the coming five years and require intervention 
in the years to come. 
 
From statistical point of view, it is concluded that data 
description methods such as trends and boxplots are 
found to be suitable to indicate presence/absence of shifts 
in pick periods of weather variable; and provide 
suggestions as to whether Climate Variability may exist 
or not for a given time span. If forecasting future disease 
case is thought, it is necessary to first fit Poisson 
regression and select weather variables that show 
significant relationship with climate-sensitive diseases. 
Such variables with significant importance will be used 
in time series models to forecast future burden of disease. 
In addition, the length of time period of data used in 
modeling weather and disease related variables affects 
the quality of forecasts; if possible, longer period of 
observed data is advised for better results. Once forecast 
is done, it is advisable to use forecasted values provided 
by the confidence interval for planning interventions, 
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rather than using the point estimate of forecasted values; 
the former gives a better estimate of the true trend. 
 
Limitation 
Data on health sector interventions such as bed net 
distribution, insecticide spraying and environmental 
control could not be obtained for the years for which 
malaria cases were observed. Readers are expected to 
recognize this in interpreting the finding.  
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